
PROPOSED SIAM PROBLEM

DAVID H. BAILEY AND JONATHAN M. BORWEIN

Abstract. Prove several conjectured evaluations of Bessel moment integrals.

1. Background

A recent paper by the present authors, together with mathematical physicists
David Broadhurst and M. Larry Glasser, explored Bessel moment integrals, namely
definite integrals of the general form

∫∞
0
tmfn(t) dt, where the function f(t) is one

of the classical Bessel functions [2]. In that paper, numerous previously unknown
analytic evaluations were obtained, using a combination of analytic methods to-
gether with some fairly high-powered numerical computations, often performed on
highly parallel computers.

In several instances, while we were able to numerically discover what appears to
be a solid analytic identity, based on extremely high-precision numerical computa-
tions, we were unable to find a rigorous proof. Thus we present here a brief list
of some of these unproven but numerically confirmed identities. In the following,
the functions I0(t) and K0(t) are the classical Bessel functions, as defined in [1,
Chap. 15], while the function K(x) is the complete elliptic integral of the first kind,
namely

K(x) :=
∫ π/2

0

dφ√
1− x2 sin2 φ

.

These formulas also employ constants K3 := K(k3), K ′
3 =
√

3K3, K15 := K(k15),
K5/3 = K(k5/3) and C, where
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.

Alternatively
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√

5− 1
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5π
K2
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1
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15π
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2. Conjectured identities

Here are our selected conjectures. Can you find proofs for any (or all!) of these?
1
π2

∫ ∞

0

tI0(t)K4
0 (t) dt ?= C(2.1)

1
π2

∫ ∞

0

t3I0(t)K4
0 (t) dt ?=

(
2
15

)2(
13C − 1

10C

)
(2.2)

1
π2

∫ ∞

0

t5I0(t)K4
0 (t) dt ?=

(
4
15

)3(
43C − 19

40C

)
(2.3)

2
π
√

15

∫ ∞

0

tI2
0 (t)K3

0 (t) dt ?= C(2.4)

2
π
√

15

∫ ∞

0

t3I2
0 (t)K3

0 (t) dt ?=
(

2
15

)2(
13C +

1
10C

)
(2.5)

2
π
√

15

∫ ∞

0

t5I2
0 (t)K3

0 (t) dt ?=
(

4
15

)3(
43C +

19
40C

)
(2.6) ∫ ∞

0

tI2
0 (t)K2

0 (t)K0(2t) dt ?=
1
12
K3K

′
3.(2.7)

A number of other related experimentally discovered but as yet unproven iden-
tities are mentioned in [2]. A discussion of the relative difficulty of each of our list
is discussed in [2].
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